
Overview Kafka was born as an in-house project to meet LinkedIn’s
log aggregation needs, and donated to Apache as an open
source project. Kafka is good at aggregating high volume low
value data such as activity logs.

Solace’s state-of-the-art messaging technology enables
all kinds of messaging and streaming across hybrid/multi-
cloud and IoT systems using standard protocols and APIs in
a way that’s easy to deploy, secure and scale.

APIs &
Protocols

Kafka provides a proprietary Java API. Other APIs are created
independently so they are inconsistent, usually unsupported
and don’t promise backwards compatibility.

Solace provides APIs for standard protocols including
AMQP, JMS, MQTT, REST and WebSocket, and supports
open APIs like Apache Qpid and Eclipse Paho.

Performance
of service, and with TLS turned on is faster than Kafka.

WAN Complex tiers and components create points of failure and
places where messages can disappear. intelligent routing and streaming compression.

Security Kafka’s connection model relies on bridges and connectors,
pushing client credentials/security to the bridge layer.

for clients and for brokers in Zookeeper. ACLs are based on
simple read/write and IP address privileges. Authorization
requires integration with external authorization services via
custom pluggable services.

including queue-level access controls. Solace is easy to
integrate into all authentication architectures, with client
authentication and data movement segregated into
application domains.

Topics Kafka only supports limited scale, exact match subscriptions

makes it hard to overlay multi-zone hierarchy in hybrid/multi
cloud systems.

subscriptions.

Messaging
Features

Kafka only supports publish/subscribe messaging, with no
support for request/reply, non-persistent delivery, point-to
point queues, or state replication.

Supports request/reply, non-persistence QoS, point-to
point queues, replication for inter-datacenter routing and
disaster recovery.

Comparing Solace and Apache Kafka

Kafka has been used to address other
big data use cases with similar needs
around data volumes, deployment
scale, and near-real-time delivery, but
its core design isn’t optimized for event-
driven messaging across IoT, hybrid
cloud and multi-cloud architectures.

When trying to apply Kafka to
messaging use cases, developers
have to code capabilities into their
applications, build proxies, or add
components. In most cases they’d be

inherently meets their needs.

Solace PubSub+

A quick look at the differences between Apache Kafka and Solace
and how they address common data movement use cases.

Kafka was created by LinkedIn
engineers to aggregate logs and ingest
them into big data stores in near real-
time, because they were dealing with
volumes that open source messaging
products like ActiveMQ and RabbitMQ
couldn’t handle.

By default, Kafka message delivery and storage is unreliable
even with partition replication. Kafka throughput and
latency is severely impacted when high QoS with messaging
ordering and zero message loss is required and/or TLS
security is enabled.

Architecture
coordination and inter-cluster communication, Kafka’s
complex architecture makes it hard to achieve lossless
multi-site disaster recovery.

broker for a clean architecture that doesn’t usually require
other components making it easy to deploy, run and scale.

Solace provides the only unified advanced event broker technology that supports
publish/subscribe, queueing, request/reply and streaming using open APIs and protocols
across hybrid cloud and IoT environments. The company’s smart data movement
technologies rapidly and reliably route information between applications, devices and
people across clouds. Established enterprises such as SAP, Barclays and the Royal Bank of
Canada as well as high-growth companies such as VoiceBase and Jio use Solace to
modernize legacy applications and successfully pursue analytics, hybrid cloud and IoT
strategies. Learn more at solace.com.

Connecting applications and information sources across cloud
and on-premises environments requires an adapter or bridge to

hierarchy. Solace makes this easy, but this mapping can be quite

In order to support distribution over WAN links between multiple
cloud and on prem environments, Kafka requires MirrorMaker
and aggregation clusters, all of which need to be deployed as fault
tolerant pairs.

Solace supports such distribution out of the box, and minimizes

enables the delivery of exactly and only the messages required
by consumers on the other end of a long-distance connection.
Solace also optimizes bandwidth by sending just one copy of each
message over the WAN no matter how many consumers need it,
and fanning it out on the other end.

Solace supports routing with REST out of the box, while Kafka
requires a bridge.

visibility into your messaging system, while Kafka requires you to
bolt together 3rd-party and open source components to build
your management and monitoring system.

Learn more at https://dev.solace.com/kafka#cloud

Microservices
Solace supports the open Web and mobile protocols that can be
used to implement rich, real-time, event-driven micro-services.

Solace enables both context-aware and context-free scaling of
applications with selective acknowledgements without the risk
of duplicates on reconnect, while Kafka limits you to stateful,
sequential apps that can experience duplicate events on
reconnect.

Solace provides mature support for the session-based
transactions that are required when orchestrating microservices.
Kafka is adding limited support for session-based transactions,
but they can only exist within a cluster.

Learn more at https://dev.solace.com/kafka#microservices

Internet of Things
Solace can terminate hundreds of thousands of Web or MQTT
connections per broker, letting massively scaled open Web/
Mobile applications send data to analytics engines, and unique
command and control messages to individual devices and
vehicles. Kafka requires a bridge or broker to terminate web and
MQTT connections, so there’s no real connection layer support
for IoT applications.

but are limited to coarse-grained topics, i.e. don’t extend to the
client level.

Solace lets you secure data in motion between connected

encryption, authentication and authorization functionality
that’s easily centrally managed. With Kafka security is inherently
disjointed because it relies on bridging extra components for
authorization, and doesn’t support tokenized access control lists
for publish/subscribe.

Learn more at https://dev.solace.com/kafka#iot

Solace provides a fully federated architecture with integrated
WAN distribution, built-in fault tolerance, compression and
security, while Kafka requires additional components and plugins
that inherently add complexity and instability. Kafka security

and system complexity.

with wild-carding that allows consumers to easily subscribe
to whatever messages they need, completely decoupled
from producers. Kafka’s coarse topic matching tightly couples
consumers to the publishers of information. If partial streams
are needed, you need to introduce custom mediation which
introduces complexity and the risk of cascading failures.

Solace supports leading open APIs and protocols, such as AMQP,
JMS, MQTT, REST and WebSocket, so consumers can access data
with their protocol of choice while still adhering to centralized
security management. Kafka requires bridges to achieve same
message distribution, making solution only as secure and robust
as the bridge implementation.

Learn more at https://dev.solace.com/kafka#digital

