

Whitepaper

Event Mesh: Event-driven
Architecture (EDA) for the Real-
time Enterprise

Jason English
Principal Analyst, Intellyx
November 2019

2

Whitepaper: Event Mesh & Event-Driven Architecture - Solace

©2019 Intellyx LLC. https://intellyx.com

Are events a blind
spot, or are they
driving your
business?

Life is asynchronous. As
conscious beings, we can
perceive life as a series of
observed events, which we
subscribe to by giving them
attention.

The same goes for event-driven architecture (EDA) in enterprise IT. Your systems are
already soaking in events – as each transaction, compute process or data transfer could be
thought of as another event, kicked off by stimuli at a given point in time. The movement
toward cloud-native microservices and the proliferation of millions of connected IoT device
interactions with enterprise systems only raises the number of events exponentially.

EDAs have existed for years, handling several of the most high-volume asynchronous
integration scenarios such as banking transaction networks, stock trading, travel
reservation systems, and government agency communications and control.

This paper will discuss how an event mesh can enable EDA and co-exist with commonly
used point-to-point integration and service mesh approaches, providing the enterprise with
reduced integration effort, better scalability, and the ability to operate and meet customer
demands in real-time.

Why become event-driven anyway?
The ability to asynchronously align services and data through EDA should be at the heart of
any secure, agile, distributed, and cloud-native application’s future. Why? Because, like oil,
the value of data increases exponentially when it’s put in motion, and the time value of
data is often diminishing. Real-time, event-driven data movement unlocks much more
potential value than point-to-point movement.

3

Whitepaper: Event Mesh & Event-Driven Architecture - Solace

©2019 Intellyx LLC. https://intellyx.com

But adopting EDA is not easy today, because enterprise IT teams are more distributed than
ever, the volume of events being created by modern technologies increases daily, and we
lack the tools, patterns and culture that would make adopting EDA less daunting.

Event mesh plays a critical role as an IT architecture layer that routes events from where
they are produced to where they need to be consumed – regardless of the system, cloud,
or protocols involved. If you’re familiar with service mesh, event mesh is a similar concept,
but for the event-driven world.

Loosely coupled by nature, this layer connects event brokers (modern messaging
middleware) within and across different environments. Applications in one environment
can receive event notifications created by applications in any other environment, as long as
both applications are connected to a local event broker.

Challenging EDA misconceptions
Event-driven architectures will commonly follow a Publish-Subscribe (or, pub-sub)
messaging pattern.

In pub-sub, the message providers (or Publishers) do not send messages to specific
consumers (or, Subscribers) but rather, categorize their data as it is published, by type or
content. Subscriber services can then, in turn, filter and consume the messages they are
looking for as events, rather than explicitly requesting a response from the publisher.

This pub-sub pattern has existed for about as long as computing itself. For instance, your
favorite RSS blog or podcast feed connects publishers and subscribers based on the event
of a new post or show becoming available.

Pub-Sub messaging, and therefore the EDAs built on them, represent an ideal model for
today’s distributed, decoupled service architectures. Given that, what are some
misconceptions that are holding enterprises back from embarking on an EDA approach?

§ High-capacity, high-security applications. Companies have very high expectations of

their systems to securely handle transactions at volume. They may assume a more
direct form of service integration would scale best, even though EDAs have been

4

Whitepaper: Event Mesh & Event-Driven Architecture - Solace

©2019 Intellyx LLC. https://intellyx.com

proven to scale quite fast and offer fewer threat vectors such as open ports to cyber
attackers.

§ Point-to-point architectural thinking. In designing distributed computing systems, it
may seem easier to build more direct point-to-point, request-response message
interactions that are synchronized between known services, where the looser coupling
of the EDA approach seems to require additional architectural forethought (this isn’t the
case, as we’ll discuss).

§ REST-based integration is currently far more popular. We owe much of the growth
of service-based computing to the development community’s support of REST
(Representational State Transfer) integration tools and techniques for connecting
services. This doesn’t mean REST vs. EDA is an either/or choice, as both approaches will
co-exist now and in the future.

§ Industry pressure for a service mesh. No business system is an island, and the need
to continually bring forward legacy technology into an increasingly distributed
computing environment, with containers and microservices strewn across hybrid
clouds, has caused a spaghetti mess of protocols, message queues, APIs and data
pipelines.

Thus, heavy commercial and open source efforts are underway to define solutions for a
service mesh, providing a common layer to orchestrate synchronous, RESTful service-
to-service communications. The hottest service mesh out right now is Istio for
orchestrating Kubernetes instances. But where does this innovation leave event-driven
developers?

While a service mesh is well-suited for synchronous RESTful service orchestration and
request-reply interaction among cloud-based applications, it cannot support asynchronous,
EDA-style, any-to-any integration of heterogeneous services based on events.

Solution: Event Mesh and Service Mesh Together
By comparison, the event-driven integration world has its own lightweight orchestration
approach called an event mesh, based on a network of interconnected event brokers such
as the PubSub+ solution offered by Solace.

Both an event mesh and a service mesh can provide a communication and data routing
layer between cloud-based microservices and the network. But service meshes are not as
useful when non-cloud legacy applications, third-party data feeds, IoT devices and edge

5

Whitepaper: Event Mesh & Event-Driven Architecture - Solace

©2019 Intellyx LLC. https://intellyx.com

computing enter the picture with asynchronous inputs. These situations call for an event
mesh, which includes an intelligent event broker to accept and route messages between
all these discontinuous services on the fly.

Think of it this way: If our extended
enterprise systems were the human
body, the service mesh may provide a
circulatory function with a synchronized
heartbeat moving data between
applications, while the event mesh would
behave more like the nervous system,
sensing any asynchronous events, with
the event broker as the brain, quickly
interpreting and routing messages
wherever they need to go.

As the world becomes more event-driven, with legacy application functionality being called
on to interact with modern stateless microservices, running in ephemeral cloud-native
infrastructure, informed by IoT device signals and orders occurring anywhere in the world,
you’ll see event mesh taking its rightful place alongside service mesh.

Where to start with event mesh + service mesh?
Anywhere you depend on integrating a mix of cloud-native containers in any private or
public cloud provider with any other services, devices and/or legacy systems, you have a
good reason to leverage the best of both worlds.

So while you may use the service mesh to discover, coordinate and balance your RESTful
microservices across Kubernetes instances on AWS or Azure, anywhere your workflow is
transmitting messages outside that particular cloud region -- through JSON, or JMS, or even
an old MQ ESB – you need an event mesh and its event broker ready to go.

An event broker should enable almost any system, service or device, in any region, to
quickly publish or subscribe to another service, whether its events are in a secured,
permissioned channel, or publicly available.

Example of Event Mesh and Service Mesh orchestrating
microservices workloads atop a common network.
(Source: Solace)

6

Whitepaper: Event Mesh & Event-Driven Architecture - Solace

©2019 Intellyx LLC. https://intellyx.com

Three steps to getting started:
1. Open your mind toward an event-driven approach.

Select your next application design or improvement project based on asynchronous
events moving through a pub-sub architecture, rather than the more direct request-
reply approach indicative of a RESTful workflow.

Changing your mind and skillset is easier said than done, of course, but remember: the
EDA pattern itself has a well-established history, its own modern open source APIs and
tools, and an active development practitioner community with educational resources.
Developers and architects can engage and learn more at the AsyncAPI open source
project and when the EDA community launches Event Academy, an educational hub to
help architects, developers and IT executives understand and embrace event-driven
architecture.

2. Don’t just govern applications and data as assets. Govern your events as assets.

So much attention has already been spent on managing the lifecycle of applications,
and treating data as the primary asset: connecting to it, cleansing and filtering it,
ingesting and transforming data, pushing it through pipelines to its ultimate
destination, with security at every point.

What if you instead focused on governing the events as assets, given the real-time
nature of so many business applications, and the increasingly heterogeneous
underpinnings of our systems?

An event broker that securely interprets and handles event data-in-motion can reduce
data management costs and system-wide resource needs, while making the resulting
applications more responsive to the content of the data itself.

3. Start building an event mesh.

Fortunately, you don’t need to start from scratch here. If well planned, deploying an
event mesh of brokers can be done with little interruption to live services, and at much
lower cost impact than you typically expect of an architectural paradigm shift. An event
mesh can be turned on as an overlay to your existing service mesh, as well as any other
integration methods.

7

Whitepaper: Event Mesh & Event-Driven Architecture - Solace

©2019 Intellyx LLC. https://intellyx.com

The event mesh and its associated tooling should naturally be able to discover, publish
and subscribe to any and all services in your hybrid IT environment, or the eventual
migration to EDA could get stalled by a dependency.

An event broker like Solace’s PubSub+ includes protocol mediation, which allows
events to be published or subscribed to across multiple messaging frameworks and
associated protocols.

Whether protocols and APIs are proprietary to service mesh vendors, cloud-native
platforms like Istio and Kubernetes, Kafka topics and Spring messages, or any of the
hundreds of other forms of APIs and messaging frameworks of legacy apps, the business
logic of event processing carries on, unlimited by the integration differences of underlying
systems.

Event-driven examples in the real world
Transforming a Bank:
This bank’s innovation team designed a new cloud-based micropayments service for
customers, using microservices in Kubernetes pods, orchestrated with an Istio service
mesh. However, the new app still needed a way to incorporate the real events – balance
checks, orders and settlement confirmations – from all of their existing legacy banking and
third-party transaction systems to complete the loop.

An event mesh allowed them to quickly add the ability to accept and communicate critical
events with systems outside the scope of the cloud-native development area.

Transforming Government:
Take the FAA (Federal Aviation Administration) or any similar government agency with a
huge transactional and data footprint.

As their control centers must each process millions of daily flight notifications and events,
they’ve been on an EDA approach all along. But attempting to make their existing Kafka
clusters extend across the enterprise to share more real-time data across control centers
would require serious point-to-point integration work.

8

Whitepaper: Event Mesh & Event-Driven Architecture - Solace

©2019 Intellyx LLC. https://intellyx.com

By employing an event mesh, the agency can immediately incorporate the Kafka services as
pub-sub providers, while expanding their integration with legacy air traffic and weather
systems, and making their own events available to commercial travel applications.

Transforming Commerce:
Customer-facing applications demand the highest levels of performance and reliability, and
to maintain critical service levels, many e-commerce firms design their application
workloads to run across multiple public cloud and private cloud data centers.

Travel apps are among the most demanding e-commerce workflows to integrate, as they
must take in a huge number of customer and service requests, interact with financial
systems, and gather up-to-the-minute availability data from a constellation of carriers and
travel providers.

Enter the event mesh, with event brokers that can learn to route and optimize events for
processing using the lowest-cost or most responsive compute resources, ensuring better
performance-to-cost ratios on each travel request. Since many of the travel partners
constantly publish availability data for potential travelers, the event mesh lets the firm
consume this data where it resides as events, rather than moving and processing the data
in much more costly and less time-efficient ways.

9

Whitepaper: Event Mesh & Event-Driven Architecture - Solace

©2019 Intellyx LLC. https://intellyx.com

The Intellyx Take

We live and work in an event-driven world.

Tightly coupled integrations, and conventional data transfer and processing techniques
won’t be able to keep up with the accelerating pace of events in the new economy.
Customer demand and cost pressures on IT will require enterprises to change the way they
think about integration and messaging.

In your next design or change exercise, rather than calling for more point-to-point
integrations – start finding ways to incorporate pub-sub calls that support an event-driven
approach.

Seek out an intelligent event mesh to reduce the configuration burden, and allow
consumers and producers of events to communicate in real-time. When done right, an
event-driven architecture is responsive and resilient, with a smaller data footprint and cost
profile.

An event mesh doesn’t mean all the integration goodness of REST-based request-response
models will go away. True cloud-native architectures will incorporate the inherent strengths
of both approaches, considering a service mesh for RESTful orchestration of Kubernetes
clusters, and overlaying it with an event mesh for pub-sub capabilities and integration with
both cloud and non-cloud-based legacy systems.

Will we see one platform to rule them all? No, we will continue to roll into a heterogeneous,
hybrid IT future, of which an event mesh is an essential element.

Only one question remains: Are you ready to drive events?

10

Whitepaper: Event Mesh & Event-Driven Architecture - Solace

©2019 Intellyx LLC. https://intellyx.com

About the Author
Jason “JE” English is Principal Analyst and CMO at Intellyx. He is focused on covering how
agile collaboration between customers, partners and employees accelerates innovation.
He led marketing efforts for the development, testing and virtualization software company
ITKO, from its bootstrap startup days, through a successful acquisition by CA in 2011. JE co-
authored the book Service Virtualization: Reality is Overrated to capture the then-novel
practice of test environment simulation for Agile development, and more than 60 thousand
copies are in circulation today.

© 2019, Intellyx, LLC. Intellyx retains full editorial control over this document. At the time of
writing, Solace is an Intellyx customer. None of the other companies mentioned are Intellyx
customers. Image source:

